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X-Ray Scattering by Atoms Using the Thomas-Fermi Model

With Quantum Corrections

James E. Enstrom

Lawrence Berkeley Laboratory
University of California
Berkeley, Calif. 94720 .

Using an‘accurate numerical solution of the,Thomgs-Fermi
_model.with.qﬁantum-mechanical corrections, we qbtain a des-
cription of coherent and incoﬁerent scattering of x-rays by
the inert gases,?ﬁﬁichvis in excellent agreement with detailed
Hartree-Fock calculations. The results are similar to those
given by the ThomasFFermi—Dirac model, but are avsubstantial

improvement over those given by the Thomas-Fermi model alone.



I. INTRODUCTION

Recently, a new integration techniquel'wés used to obtain an ac-
curate solution to the differential equation which determines the first-

order quantum-mechanical corrections of exchange, inhomogeneity, and
2,3

correlation = to the semiclassical Thomas-Fermi model of the atom,“ and -

this giVés a new potential field to describe the electron density abbut
an atom. This improvement has been shown to lead to total energies of
_neutfal étdms,3 and diamagnetic susceptibilities and atomic polarizabi-

1‘among other properties, which are in sub-

lities of the inert gases,
stantially better agreement with experiment than are the similar valueé
calculated by the exact Thomas-Fermi model. The.pgrpose of this paper

is to show that the improved Thomas-Fermi model also gives an excellent
deécriptibn of the coherent (elastic) and incoherent (inelastic) scatter-
iﬁg‘dfvx-rays by the inert gases.

Abcbtding to the Thomas-Fermi model of the atom, including the
quantum-mechanical corrections, the Coulomb potential about a spheriéally
symmetric neutral atom of atomic number Z, namely, V(r) = - Ze2/r; is
replaced b& the modified potential |

- Ze2 |
V(r) = T (V) + ay(x)) ¢

2/3 1/3 1/3

where r = bx, a = (1/8)(672)"2/3, b = (6m) a,/821% = 0.88534 o 2713,

and ag = hzlme2 is the Bohr radius for hydrogen. = y(x) is the well known

- solution of the Thomas-Fermi equationl+ and is given approximately bys




| 2
1 + 1.81061x ' + .60112x \ @
3/2 2 5/2) »

1/2
b= 172
1+ 1.81061x ' ° + 1.39515x% + .77112x>' % + .21465x% + .04793x

with a maximum error of 6y < 1.2 x 10-5. y(x) is the solution to the
equation due to Kompaneets and Pavlovskii,?s3. which gives the quantum-
mechanical corrections, and using recently obtained results! and the fit-

ting method of Mason,5 we can approximate the solution with

. .5/2
4x + e x + cx +cx” +e,x

372 3 573 7z » 3

-3
+ cXx +c.X " + clox. + Cllx

where c) = -191782.81, c, = 1907451.1, c, = -5000676.6, ¢, = 1854931.5,

Cg 6 7 g = 94265.309, cg =

-31568.953, 0 = 5240.8820, and ¢y = -5083.7600, with a maximum error

= ~45313.459, ¢, = 185272.21, c. = -52460.896, ¢
of 6y < .02, or ady =1 x 10-4 for z > 10. -

II. COHERENT SCATTERING

The differential cross section for coherentvelastic X-ray scattering

by an atom is given by“’6

, _
d°coh = t(8)[F(6,E,2)] 49 R | (4)



where t(6)dQ is the differential cross section for classifal Thomson

scattering, given by6s7

2

t(6)dQ = %-ro a+ cosze)2n sinbdé , (5)

where r, = e2/mc2 is the classical radius of the electron and 6 is the

scattering anglé. The form factor is defined by"

T = FO,E,2) = for MLk g 6)

where the integral 1is over all space, p is electron density given by

Poisson's equation

p(r) = - v v, m
4re
and k is a wave number
Jbm 8 tE e
k=Tslng=yragysing , (8)

(-] .
with A the wavelength of the x-ray in A = 10 8'cm and E the energy in

 keV. Combining Equations (6), (7), and (1), we obtain

*

. 2 .

_ d sin ux

F=2f =2 / :i? (U)(x) + ay(x)) — dx , (9)
(o]
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where u = kb = .47586 EZ "/ “sin 7 and x, is the radius of the atom.!

1
We shall now iﬁtegrate Equation (9), but we first simplify it by

integrating by parts and by using the appropriate boundary conditions!

to obtain
v _ gin ux, :
f(u) = F/Z =1 + (w(xl) + ay(xl)) —-—;;I—-— cos uxlu
' xi ' . .
-u f ' (w(x) + ay(x)) sin ux dx . (10)
(s

Using care in integration due to the oscillatory nature of the integrahd
in Equatioﬁ‘(IO),.we obtain an evalu;tion of the_atomic form factor
divided by atomic number as a fuﬁction of the scattéring parameter u.
The results‘are‘given in Table I for the inert gases. Also included are
results for the Thomas-~-Fermi atom, which are Z-independent and are ob-

tained by setting a = 0 and x, = » in Equation (10). These latter values

1
are in good agreement with the approximate Thomas~Fermi solution given
originally by Bewilogua,8!9 but are significantly different from our values,
especlally for low Z. The form.factqr has been calculated previously by
| Thomas and Umedal? using the Thomas-Fermi-Dirac model and these results
are in closevagreement with ours.

o Using the atomic form factor, we can c¢alculate the total crosé

sections for the.coherent elastic scattering of x-rays by the inert gases.

This is done by integrating Equation (4) over all angles



coh

o =ft(6) [F(s,E,2)]% 4o

1 ' ' (11)
= wrzzz /(1 + ud)e? (wyaw s
4

where f(u) is given by Equétion (10) and u = .33648 EZ—1/3/I:F and

~ 4 = cosf. The results are presented in Table II foi Nelo, Arls, Kr36,

and Xe54 as a function for x-ray energy over the raﬁge of 1 keV to 1000 keV.
Included for comparison are the best available theoretical results, as

obtained by Storm and Israelg’11 using Hartree-Fock-Slater wave fﬁnct’ions.l_z‘ll+ !
Note the agreement between the two sets of results over all energies for

Ne is good at least to 20%Z for Ne, to 10% for Ar, to 4% for Kr, and to

2% for xe._ The rapidly decreasing errdr with increasing atomic ﬁumber

indicates that the electron density distribution is being better approxi-

mated by the given statistical model when more electrons are present.
III. INCOHERENT SCATTERING

The differential cross section for incoherent x-ray scattering from

a free atom with Z electrons is given by_e’ls’16

&) -smE) az
inc fr '

where

- ' ke -t ) o |
S(k) = —;—(Z <p°|e v lwo> - |F(k)|2) (13)




is the incoherent-scattering factor, where
kT |
- n
P (k) Zn:<wo|e~ lwo>~ (14)

is the coherent-scattering factor, given earlier as Equation (6), and
wo is the ground state wéve function of the atbm. The term (do/dQ)fr
. is the scaftering cross section for a free eléctron at rest. At low
incident phot&n energies, this is the Thomson cross section given'by

l Equation (5), and at high incident photon energies, this is the Klein-
.Nishina scatteriﬁg cross se_ction.6

It has been shown that Equation (13) can be written aslS*16

L]

180 ~ _k)of kh a
S - 1-3 (3h3)fdv (PF(r) 4") (PF(r) + 8“) , (15)

where dV is the spatial volume element, and

1/3

e = 32) oo o as)

is the local Fermi momentum. Using Equations (7) and (1) for the electron

charge density, we can rewrite Equation (15) as

' % 2 /3 )2([, .2 | 1/3
S =1« / xzdx{[%;d:f (w(x)+ay(x))] - w} {l;{]: fx—z(w(x)+ay(x))} + -‘21} ,
. xa : ‘

Can



where w = bk/(61rZ)1/3 and X is determined by the condition_

2
%% (b)) + ay(x)) = . (18)
dx

At Very small values of w, which corresponds to large X, , We must set
xb =X, where Xy is the radius of the atom as determined earlier.! For
mathématicai rigor, we have accounted for the divergent (and negative)
behavior of

2 3

4_(p+ay) > (1 +3 aa)x
dx2 2 2

-1/2 _ _ -3/2 (19)

é
at very small values of x. Requiring the electron density to be positive

means that in Equation (17)

a
X=X

a = 1+3332/2 * (20)

However, X, is a very small value (xa = ,0039 for Ne and X, = .0012 for
Xe) and extending the lower limit of integration to O in Equation (17)

1/2 S1x 10-4,'since the

only has an effect of the order of AS ~'axa
integral is convergent. v

Using Equation (17), we have presented in Table.III values of ZS(k)
for the inert géses as a function of wave number k (in Z), Along with
corresponding values obtainéd from.Hartree-Fock calculations.l’? Note

(-]
that for k > 1.0 A, all of our values are within 2% of the Hartree-Fock

. ) °
values, and that for k > 0.5 A, all the values are with 10%. Comparing



with-the results of Mendelsohn and Biggs,16 we further note that our
values are all within 27 of the correséonding Thomas-Fermi-Dirac values.
But, for the high-Z inert gases, Kr and Xe, and for k > 1.0 ;, our values
are closer than the Thomas-Fermi-Dirac values to the Hartree-Fock results
by at least a factor of two. Thus, except for the high-Z, high energy

_ region, the present qﬁantum—mechanical model and Thomas~Fermi-Dirac model

are very similar, mainly because they both account_for exchange, which

. .is the major quantum-mechanical effect neglected in the Thomas-Fermi model.

Furthermdre, the present model is a substantial imprpvement over the
Thomas-Fermi model alone, especially at low energies, as shown by‘Ctomer
.and Mann;17 Pohler and Hanson,!® and Parks and Rotenberg.19

‘In conclusion, we find our first-order quantum-mechanical model of
the atom to be quite similar to the Thomas—Fermi-birac model, and in very
good agreement with the best available Hartree-Fock modél for the cal-"

culation of coherent and incoherent x-ray scattering by the inert gases.
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Table I
Atomic Form Factors Divided by Atomic Number for
the Inert Gases Using the Quantum-Mechanical

Model and the Thomas-Fermi Model'

f QM ‘
, - iy
u Ne Ar Kr Xe ‘
o | 1.000 1.000 1.000 1.000 | 1.000
1 i .982 | .978 .973 .970 - .953
2| e .919 .904 .897 .876
.3 .863 842 | .824 818 | ..799
4 - .787 765 .750 746 | 728
IR AT .697 .687 .682 666
6 | .es2 .639 .629 .624 611
.8 .553 .543 .533 .530 - 519
1.0 475 465 .459 456 . .452
1.2 | a2 .405 .399 397 < .390
1.5 .341 .335 .331 329 .324
2.0. | .258 256 | .252 .251 247
2.5 .203 .201 .200 199 197
3.0 .165 164 .163 .162 .161
3.5 .137 .137 .136 136 | .35
4.0 117 .116 .116 16 | 116
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Table II
Total Coherent Scattering Cress Sections (in barns)
for the Inert Gases Using the Quantum-Mechanical

Model and the Hartree~Fock-Slater Model

‘Ne Xe

E(keV) | @ HFs® QM HFS? Qo | mps® QM | uFs®
1| 6112 63.4 200. | 201. 813. | s18. | 1840. | 1840.

2 | 49.9 s6.6 | 169. | 172. m2. | 730. | 1640. | 1640,

3| 39.8 | 48.1 140. | 141. 610. | 633. | 1440. | 1420.

6 | 32.2 39.8 116. | 116. 52k, | 548. 1260. | 1240.

5 | 26.6 | 32.7 98.2 | 96.3 453. | 478, | 1100. | 1090.

6 | 22.2 27.0 83.7 | 82.1 | 395. | 421, 972. | 961.

8 | 16.2 19.0 63.0 | 63.0 308. | 333, 773. | 762.
10 | 12,4 | 140 | 49.1 | s0.4 | 246. | 266. 626. | 618.
15 | 7.18 7.84 29.5 | 31.1 154. | 163. 404, | 404,
20 | 4.69 5.11 19.7 | 20.6 106. | 110. 283. | 288.
30 | 2.46 R 10.6 | 11.0 9.1 | 62.2 | 161.| 163.
40 | 1.51 1.67 6.65 | 6.96 | 37.9 | 39.7 104. | 106.
50 | 1.03 1.12 4.56 | 4.81 26.3 | 27.5 73.2| 74.9
60 | .73 | .809 3.32 | 3.52 | 19.4 | 20.1 54.2| 55.7
80 | .435 | .47 1.98 | 2.09 1.7 | 12.1 33.2| 33.7
100 | .285 312 | 131 | 138 | 7.84 | 8.00 22.4| 22.3
200 | .0745 | .0819 .347 .369 2.12 2.15 6.14| 6.08
wo | .0189 | .o214 | .o886 .0960 | .547 | .555 1.60{ 1.57
600 | 00843 | o101 | .0396 | .0427 | .25 | .250 .| .716 | .706
1000 | .00304 .00379 | .0143 | .0156 | .0885 | .0910 | .259 | .257
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Table III
Incoherent Scattering Factors, ZS(k), for the Inert Gases
Using the Quantum-Mechanical Model and the Hartree-Fock Model

9.991 |10.000 | 17.939 | 17.978 | 35.558 | 35.504 | 52.743

Ne Ar Kr ' . Xe
k(Z’l) QM | mHFls QM . HF1S6 QM HF16 QM HF16
005 | .136 .002 192 | .006 281  .009 351 .013
.01 .275 | .009 383 | .024 | .s554| 035 | .es4| .0s2
.05 | 1.365 218 | 1.886 | .571 | 2.706 | a2 | 3312 1.194
10 | 2.580 | .812 | 3.597 | 1.956 | 5.206| 2.703 | 6.398 | 3.841
a5 | 3.544 | 1.637 | s.017 | 3.588 | 7.369| 4.sos | 9.121| 6.677
.20 | 4.315 | 2.547 | 6.202 | 5.033 | 9.244| 6.760 | 11.526 | 9.340
.30 | s.488 | 4.269 | 8.004 | 7.377 | 12.383 10.157 | 15.642 | 13.892
40 | 6.335 | 5.644 | 9.547 | 8.998 | 14.931| 12.828 | 19.075 | 17.307
.50 | 6.974 | 6.640 | 10.701 | 10.106 | 17.058 | 14.969 | 22.008 | 20.175
.60 | 7.468 | 7.320 | 11.639 | 10.967 | 18.864 | 16.849 | 24.552 | 22.833
.70 | 7.860 | 7.774 | 12.415 | 11.726 | 20.420 | 18.562 | 26.786 | 25.324
80 | 8.175 | 8.085 | 13.064 | 12.424 | 21.774 | 20,123 | 28.766 | 27.619
.90 | 8.431 | 8.312 | 13.616 | 13.061 | 22.962 | 21.535 | 30.535 | 29.680
1.0 8.643 | 8.490 | 14.085 | 13.629 | 24.013 | 22.804 | 32.123 | 31.488 |
1.5 9.289 | 9.113 [ 15.652 | 15.489 | 27.823| 27.313 | 38.125 | 37.628
2.0 9.590 | 9.517 | 16.492 | 16.324 | 30.189 | 29.870 | 42.051 | 41.477
3.0 | 9.836 | 9.875 | 17.288 | 17.132 | 32.733 32.659 | 46.720 | 46.254
4.0 9.922 | 9.967 | 17.619 | 17.573 | 34.012 | 33.919 | 49.258 | 49.030
5.0 9.959 | 9.991 | 17.778 | 17.800 | 34.715| 34.562 | 50.760 | 50.673
8.0 52.591
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